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The state of stress in a thin elastic shell of zero curvature with free edges is investigated. 

It is deduced that the conditions of zero moment (membrane state) formulated by Vekua 

for shells of positive curvature remain valid for shells of zero curvature, provided that the 
edges of the latter shells are not asymptotic. It is shown that the state of stress and defor- 
mation of the shell increase sharply with relatively small’deviations from the conditions 

of zero moment. 

1. We refer the neutral surface of the shell of zero curvature to lines of curvature. 
We denote the parameters of this system by (u, p) and assume, following El], that 4’ 
denotes the arc length along the rectilinear generator. The remaining notation is a’lso 

adopted from Cl]. 
We study a closed (without the edges p = const) shell of zero curvature whose both 

transverse edges c1 = rzi and CL = aa are free from any supports. The shell is acted 

upon by a surface load (whose components are X, Y, 
Z) and the boundary forces lying in the tangential 

plane (the forces n,, t, applied to the edge CL = a, 
the forces n2, tr to the edge a. = a,). The positive 
directions of the external forces, the displacements 

and the vectors of the moving trihedron are shown 

in Fig. 1. 

2. We begin by discussing the problem of obtain- 
ing a solution of the stated problem according to the 

membrane theory, i.e. by integrating the membrane 
state equations of equilibrium with the shear bound- 
ary conditions, which in the present case have the 

Fig. 1 form 

T, = n,, s, = t, when a = a, (2.1) 

T, = - n,, S, = - t, when a = a2 

taken into account. This means that a membrane state of stress corresponding to the 

given surface load X, Y, 2 and the tangential forces n,, t,, n2, t, must be con- 
structed. Vekua investigated in p] such a problem for shells possessing positive Gaussian 
curvature throughout, and showed that the problem has a solution if and only if no work 
is done by the surface and the boundary loads on the displacements associated with any 
infinitesimal flexure which the neutral surface may undergo, under the condition that 
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the displacements of its edge (or edges) may not be restricted in any manner. In the 
present paper we investigate the validity of the Vekua theorem as applied to shells of 
zero curvature. 

First it must be noted that the Vekua theorem is invalid for shells of zero curvature 

with rectilinear edges. This can be shown by constructing the following example. 
Example. We consider an open shell of zero curvature whose edges a = a,, a = az, 

fi = fix, fi = 82 are free. Assume that the surface forces are absent (X = Y .L g = 0), 
that the curvilinear edges a = a, and a = a2 are load-free and, that the state of stress 
is induced only by the tangential forces applied to the rectilinear edges of the shell 

(Fig. 2). 

Fig. 2 

ferent from infinity). 

The membrane state of stress fulfilling the above 
requirements satisfies the following membrane state 

equations of equilibrium of an arbitrary shell of zero 

curvature: 

$(BT*)+8+-$~+BX=0 

$ (BS) + % +a;S+BY=O (2.2) 

Tz 
+-z=o, sr = - $2 = S 

here i is the second coefficient of the first quadratic 
form and ‘H is the principal radius of curvature (dif- 

The general solution of (2.2) can be written as 

(2.3) 

where 11, f2 are arbitrary functions of fi. We see from these solutions that, if X - Y = 
= Z z 0 and the curvilinear edges are load-free, i.e. if T1 and S satisfy the homogen- 
eous (with n, = n2 = t, = tZ s 0) conditions (2.1). then the equations of equilibrium 

have a single trivial solution T, = S = TZ s 0. Consequently no (non-zero) forces 

applied to the rectilinear edges of the shell of zero curvature can generate a membrane 
state of stress. 

We now turn our attention to the displacements caused by the infinitesimal bending 
of the surface of zero curvature. Their defining equations are ( [l], p. 126) 

The quantities B and R have the same meaning as in (2.2). and the following formulas 
( El], pp. 124-125) hold for the shell of zero curvature 

B = bo + ab,, R = r. + arl, B/R = b/r 
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here b, &, by, r, rot tl are functions of_ p only. Taking this into account we obtain the 
following general formulas far the displacements u. v, w 

.T 

Y== Pg+mp& 
R 

u =%r w=B ap i 
q_g, ) 

(2.4) 

where 91 and gt, are arbitrary functions of 2. 
For pk con&, i.e. on the rectilinear edges, 16 and v vary linearly in a and the exter- 

nal forces can be chosen on these edges without any difficulty in shch a manner, that no 
work is done by them on the variables u and IL. This implies that the Vekua theorem 
cannot be applied to a nonclosed shell of zero curvature. 

8, We now consider a closed shell of zero curvature. The work L done by all exter- 
nal forces on its displacements is given by 

L&n, - ut,)B,dP+~( un2 + vt2) B2dS + 

Px Pa 

PI a* 

Let us insert into the above formula the expressions (2.4) for .u, u and w and perform 
the integration by parts with respect to /j so as to eliminate drp, / dp -and & / d@. 
Assuming that the corresponding integrands are continuous in fi, we obtain 

L = - ‘s’ trJ+ps d/3 + p ts&%s dQ - r G+P, dP + 

+Tn2B,rp,dZi-f~~~Y-~(R~~jRp,dad~+ 
Pt t% h, 

If the obvious periodic&y requirements hold on traversing the contour of the transverse 
cross section, then the integrated part of (3.1) contained within the braces will vanish. 
This we assume, requiring in addition that L,vanish for any ,tpr, vat i.e. that no work 
is done by the external forces on the flexurai displacements. This is obviously equiva- 
lent to the requirement that the coefficients of qr and cp, appearing under the integrals 
(in p) vanish separately. Hence 
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=I c[ h, 
B-&(RZ)- B2Y] da + t,B12 - t,Bsa = 0 

.A 

+[8 
aS 

q(RZ)-BY]da+~(BX+~RZ)da- 
. 

a1 a1 

(3.2) 

- -$ (t&Pd - n,B, + n,B, = 0 

4, All membrane states of stress, i.e. the solutions of (2. Z), are defined by (2.3). The 

requirement that the first two boundary conditions (2.1) hold, yields the following for- 

mulas for the arbitrary functions fr and fs 

fr = t&% fs = nJ& 
Inserting this into (2.3) and demanding that the last two conditions of (2.1) hold, we 

obtain the following two necessary and sufficient conditions of existence of the desired 

membrane state of stress 
at 

S[ B + (RZ) - B’Y] da + tlBla - tzBa2 = 0 (4.1) 

;~~~B,~(R~)-BY]*~+~~X+~R~~*+ 
aI =I I 

+ f-$ (gtl) du - n,B, + n,B, = 0 (4.2) 
a1 

The relations (4.1). (4.2) are equivalent to (3.2). This is obvious in the case of (4.1). 
In the case of (4.2) we can note that by (2.4) we have 

1 a P -=-A - 
B= c 1 aa B 

and eliminate the inner integral in the first term of the left-hand side using the integra- 

tion by parts. The resulting equation can easily be transformed with the help of (4.1) 
into (3.2). This proves the validity of the Vekua theorem for a closed shell of zero cur- 
vature with ‘the transverse edges following the lines of curvature (the only requirement 
being that the components of the surface load and the edge forces are sufficiently smooth 
functions of the points belonging to the transverse cross section of the shell). 

6, We shall now consider a problem whose formulation includes moments and use the 
example of a circular cylindrical shell of medium length to study how the asymptotic 
behavior (in h) of the stress-strain state varies with the conditions of the Vekua theorem 
being satisfied or violated. 

The position of a point on the neutral surface is defined in terms of the relativedis- 
tance_E, measured in fractions of the shell radius r along the generator and the angular 
coordinate (3 , and we assume that the whole neutral surface is defined by the inequali- 

ties 0<8<2n, -l&g<1 

We assume the boundary load to be zero (n, = t, = nz = tz = 0) and the surface 
load to be defined by 
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X = X, cos me, Y = Y, sin me, Z = Z, co9 m0 (5.1) 
where m = 2 , stipulating at the same time that the surface load is self-balancing over 
the whole shell and that it does not vary much. _..- 

The transverse shell edges i = -1 and E = 1 are, assumed to be free, and to sim- 
plify matters we restrict ourselves to the case’ when Y, (E) and 2!, (E) are even func- 

tions, while X, (%) is an odd function of E. Then the ‘problem becomes symmetrical 
with respect to the cross section E = 0 and only phenomena taking place within the 

region 0 & .% z 1 need be considered. 
We employ the method of partitioning described in Cl]. i. e. we seek the general state 

of stress Q in the form of four terms 

Q = Q(P) + Q(m) + Q(b) + Q,t”) 

where QP) is the state of stress corresponding to the particular integral, @*) is the 

membrane state of stress, Q(b) is the purely moment-induced state of stress and Q(e) 
is the simple edge effect (in all cases Q denotes the collection of stresses, moments, 
displacements and angles of rotation of the state of stress under consideration). All these 
states were constructed in [l] (ch. 6, 15 and 17) and the formulas defining the correspond- 

ing quantities are ( * ) 
E 

S(;pL _ r (mZ, + Y,) @sinme s 
1 1 

Ty’=rf[--Xm+m~(mZm+Y)d%]d$cosmO 

Tim’ = Cl cos m0 N’,m’= 0 

Gf’ = q4C2 ~~~~a!)) dcos me, Nib’ = 0 

2Ehw@) = (C, cos 5. + C4 sin 5) ec cos me 

Tp’ = - q2mVare1 (C, cos 5 - Cs sin 5) eC cos mf3 

T$“’ = - r-1 (C, cos’ 5 + C, sin 5) ec cos mtl 

s’,“’ = - q ‘I2 JfZ mv_Wl [(C, - C,) cos 5 + (C, + C,) sin 5 ] eL sin mf3 

Glee) = - q2vm2 (C, cos 5 - C3 sin c)e’cos m6 

N,@) = ql/zf%-lr-l [(C, - C,) cost + (C, + C,) sin ?Je’cos m0 

v4 = 3 (1 - a$, 5 = ‘lzT/~ (E- 1) q 

where q is a small parameter given by 

TJ=Jfm (5.3) 

l ) For pure moment-induced state of stress p] gives only the displacements, but the for- 
ces and moments defined by the latter can easily be obtained using the methods given 

in u] ch.17. 
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Since the unknown quantities (functions of 8) vary as sin me or co.3 me, constants 
replace the arbitrary functions in the above formulas. c1 and C, are the constants of the 

membrane state of stress and of the purely moment-induced state of stress (since the 
problem is symmetrical, each state retains one constant), while,C, and c, are the con- 

stants associated with the simple edge effect at the edge ‘E = 1. 
When a load of the form (5.1) is applied to a circular cylindrical shell, the condi- 

tions of the Vekua theorem become 
1 1 

s (m.Z, + Y,) 4 = 0, s [?I, + Em (m=G + Yd1 G = 0 (5.4) 
-1. -1 

In the present case these conditions are equivalent to 

sl”‘Ir=1= T:p’ je=l = 0 (5.5) 

The possibility that (5.5) may not hold in the principal or second order terms cannot, 
however, be dismissed ; therefore we assume that 

Tin’ j&1 = rl’* r Tj$r$,, s\*’ (;=1 = q’” 2 @?$, (5.6) 

here p is an integer determining the accuracy with which (5.5) are expected to hold. 

It is assumed that (5.5) hold to within the order of 

E = O\(r)P) 

At the edge E = 1 the condition that forces and moments are absent must hold. 

This leads to the following system of algebraic equations defining the constants c1, C,, 

cs, c,: T$*) + q-a Cl* ._ +wz 4r-~ c,* _ ,,-C+Z 4v-2,.-i c,* = 0 

@’ + q-b+2 G2*;- rl-c+1 fr v-~-1 (cs* - cd*) = 0 
(5.7) 

q“G1, - q-a+4 J/s rC1* + q-b+2 2/2 G,* _ ll-c+2 v-2G,* = () 

Tl4N1* + rJ-c+1 1/2 1/z- v-l?.-1 (cs* - cd*) = 0 
where 

Cl = yaC1*, C, = q-b-2C2*, c, ,= q-ccs* 

c4 = q-cC4*, G:*’ = q4Gl,, Nip’ = q4N,, (5.8) 
We neglect, for simplicity, the correction terms due to the torsional moments appear- 

ing in S1andN1. The expressions for G1, and N1, appearing in the last two equations 

of (5.7) could.easily be written out in full, but they are complicated and shall not be 

required in what follows. We only note that the powers of rl in the expressions for Nl(*) 
and G1@) appearing in (5.8) are chosen so, that 

Gle = 0 (Ty’j 9 Nre = 0 (T’,p’) (5.9) 
We assume that the power indices a, h, c appearing in (5.8) are integers and that 

the constants Ci* are of the order 0 (q'). Then (5.8) is used to find the asymptotics 
of constants CL, and by virtue of (5. i), the required asymptotics of the state of stress of 
the shell is defined. 

The indices a, b, c in (5.7) must be chosen so, that the passage 9 --f 0, yields an 
iterative process of solution of (5.7). in which the initial approximation system is solva- 
ble and independent of Tl. This is achieved by choosing 

a=- ~1, b=2-p, c=2-p (5.10) 
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To prove this we write the required constants in the form 

ci* = 2 V%(S), t = 1, 2, 3, 4 
r=a 

(5.14) 

insert (5.11) into (5.7), take (5.6) into account, and equate the coefficients of like 

powers of ti to zero in each equation, to obtain 

T$) + Clcs) - 4r-’ C2csj - 4v9-l C4csj = 0 

S$!j + 4r-1G(r) - ?2- v-W1 (C&+I) - G(s+d = 0 (5.12) 

G@‘_ us a+w - 4/9 rCl(s-.a) + % Ca(s) - yea COW = 0 

Ni&+p) + I/, l/z y-l.--l (c3(8+1) - ‘Cgs+1)) = 0 . 

We assume that 

The sequence of systems of algebraic equations (5.12) in which the quantities with 
negative indices are assumed zero, yields the following recurrent formulas defining the 

groups of constants 

in the order of increasing (8). 
(&a? (1 = 1, 2, 3, 4) (5.f3) 

Let us suppose that the constants (5.13) have been found for _s = 0, ?, . . . k - 1. 
Assuming that the quantities accompanied by the superscript (p) are also known, we can 

obtain (5.13) for & = ic by putting s = k in (5.12) and adding to the resulting equa- 
tions the fourth equation of (5.12) after substituting d = k - 1 into it. This yields a 

system of five equations with five unknowns Ci R (i = 1, 2, 3, 4) ,and Cs(~+I) - Cdc~+l) 
which, as can easily be checked, always has a ‘solution. 

It can easily be shown that (5.13) can also be obtained for s = 0. Putting s = 0 
in (5.12) and adding the fourth equation of (5.12) in which we put s = -4, we obtain 

which proves the proposition. 

6. We consider the asymptotics of the stress-strain state of the shell, arising from (5.9). 
Formulas connecting the forces T and moments G with the stresses can be written as 

QT = 'IaT I& CG = %G / h= (6.1) 
where T: denotes any force and,(; any moment. 

This, together with the formulas (5.2). (5.3). (5.8) and (5.9), yields the following 

stress asymptotics o(Tp) = q-80 ( T’p’), IS(G) = Tf 0 (P’) 

c&T) = Tp-20 (Ty, o(Gm) = q’ 0 (P) (6.2) 

&) = qb’-4 0 (Ttp’) 

&' =q'-so(T(p);, 

&‘= qt"40(Ttp9 

&') = q’-4 0 (T(P)) 

while the elasticity relations 
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ZEh+T,--T,, 2Eh[+$ +B$ 

(6.3) 

yield the displacement asymptotics for the particular integral and for the membrane 

state of stress. 
An assumption that the displacements do not vary very much, i. e. that differentiation 

does not affect their asymptotic order,enables us to write 

2EhU@) = 0 (Ttp’), 2EhU’“’ = 0 (pm’) = qp 0 (T?) (6.4). 

where u, is any one displacement. 

The latter estimates are not suitable for the purely moment-induced state of stress 
where the principal parts of the left-hand sides of (6.3) vanish, nor for the edge effect 

for which the assumption that no large variations in the displacements take place does 
not hold. For the purely moment-induced state of stress, relations of the form 

2Ehx, = ~Iz--~ (G, - crG,), 2Ehx, = 3h-2 (G, - uGJ 

BEhz-= 3h-2 (1 + a) II, 

must be used instead of (6.3). and these relations yield, on expressing xl, xs, z in terms 

of displacements 2EhUP) = ~-4 0 (I$~‘) = 7~1-4 0 (T’p’) (6.5) 

The edge effect displacement asymptotics follows from (5.2). (5.3) and (5.8) and can 
be expressed by 

2EhUC”) = 0 (@‘) = EEL-s 0 (Tcp)) (616) 

where U(e) denotes the largest displacement due to the edge effect, i. e. the displace- 

ment z&j. 

In the following the quantity Q will be understood to exceed P by r orders of magni- 
tude if P = QO (7’) (if the relative thicknessof the shell is 0.01, then the statement: 
“increased by an order of magnitude” will imply the appearance of an additional multi- 

plier of the order of 10). 

Let us put p = 4 in (6.2). (6.4). (6.5) and (6.6). i, e. let us assume that the condi- 
tions of the Vekua theorem hold with the accuracy of up to the order of 

E = 0 (q4) = 0 (h2) 
Then the stresses associated with the particular integral will exceed those due to the 

purely moment-induced state of stress and the edge effect by two orders of magnitude, 

i.e. the methods of the membrane theory which can be used in the present case, give a 
stress pattern which is formally correct. When the moment theory is used, the only sig- 
nificant corrections appear in the displacements since U(*) , as well as [l(P) and /J(m), 
are all of the same order. (This follows naturally since the membrane theory does not, 
in general, allow a unique determination of the displacements in an unconstrained shell). 

Formally, when an unconstrained shell is loaded in accordance with the conditions of 

the Vekua theorem, its behavior resembles that of a supported shell (it can be shown 
that in the latter shell the asymptotic stresses and the deformability are of the same 
order). This fact, however, is of no pra&cal value, since the stress-strain asymptotics 
in an unconstrained shell is unstable (small deviations in the load produce significant 
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changes in the stresses or displacements). For example, when. p = ‘1, i.e. when the 
conditions of zero moment are violated in the quantities of the order of 0 (+Q (~‘~~~ 
(a 10% error with the relative shell thickness of 0.01). the stresses increase by an order 
of magnitude (roughly speaking by 10 times) and the displacements by three orders of 
magnitude (1000 times). 

For i_& E 0 and the conditions of zero moment are violated in the principal terms, 
the stresses increase by two orders of magnitude (obviously we assume that the linear 
theory of shells still holds, i.e. that the loads are much smaller than the ones that the 
shell is usually called to carry). 

‘7. The results of the asymptotic analysis were verified by solving the problem numer- 
ically, according to the plane theory of shells with the moments taken into account. The 
algorithm for such a solution is discussed in detail in [I], ch. 10. 

The load was given in the form 

X = sin nE cos 28, Y = cos ng sin 28, 2 = cos nE cos 26 (7.1) 

The parameters chosen for use in the computations were 

v2=h/r=0.01, (I=~/~, 2Ehl(1-u2)=1, r=l 

Under the load (7.1) the second conditions of (5.4) is satisfied identically, while the 
first one is reduced to 

sin m = 0 (7.2) 
and holds, if n = nk (k = 1, 2, 3, .:.). 

In the course of computations we have set k = 1 . We have also considered the cases 

Fig. 3 

6G=f*COS28 (,.‘==2, 3, 4) 

when(7.2) is changed by 0.1” (p = 3, 2, 
1, 0). This was done by assigning the values 
(0.999n, 0. SSn,, 0.9s and 0.53~) to ,li and 
performing the computations for each of 
these values. For .n = rc , the zero moment 
conditions are satisfied exactly, but the 
membrane theory itself has an intrinsic 
error which is at least of the order 0 (h”) = 

= 0 (q4) (see cl], ch.15) and the value of 
p = 4 was set to correspond to n = i”~ . 

The results of the computations are given 
graphically. 

The graphs of u* versus 5 are given in 
Fig, 3 as solid lines, each accompanied by 
a number indicating the corresponding value 
of p . The quantity u* is connected with 
oG , the latter denoting the stress induced 
by the moment G, by the following formulas 

GG= toa-rO*COS 20 (c’ = O,i) 

in which the choice of the scale factor is made in full agreement with the theoretical 
asymptotics given by (6.2). The validity of the latter is confirmed by the fact that u* 
is of the same order in all versions (the ratio of the largest ordinate values does not 
exceed three). 

The broken line in Fig. 3 depicts the amplitude values of the stressesor. versus the 
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maximum tangential force Te , for in = 4. Comparing uT with oc we see, that for p = 4, 
oT > @o.This means that when the conditions of zero moment hold, the state of stress 

can indeed be called moment-free, although this is not a strict definition. Comparing, 
on the other hand, oT with ao when n = 2 we see, that their maximum ordinates are 

nearly the same. This also corresponds to the asymptotics (6.2), the latter implying that 

the stresses induced by the forces and moments become commensurable, when p = 2 . 

Fig. 4 Fig. 5 

Fig.4 depicts the auxilllary function w* related to the deflection w as follows: 

W = 104-p w* co5 20 (p = 0, 1, 2, 3), w = 4.104“ w* cos 20 (p = 4) 

The scale factor here is chosen in accordance whith the theoretical asymptotics (6.4)- 

-(6.6). except for the case I.L = 4 for which an additional multiplier is introduced. The 
graphs confirm the theory, although the case of ir = 4 deviates from it somewhat. This 
is however to be expected, since (6.4)-(6.6) imply that for p < 4, w (at some distance 

from the edge) is basically defined by the purely moment-induced state of stress, and by 
the sum of the moment-induced and membrane states of stress when p = 4. 

8. The jump in stresses and consequently in the deformation which occurs when (5.4) are 

violated, is inevitable. It follows from the static concepts and must not be attributed to 

the shortcomings of the theory of shells. 
Let us cut, from the circular cylindrical shell acted upon by the load (7.1). a segment 

(Fig. 5) defined by the inequalities 
-i.<$<l, ‘jrn,(0 <3/rn 

The transverse shell edges are free, therefore the surface load applied to the cut-out 
part should be balanced by the forces and moments applled to the edges 6 - r/4 ?c and 

6 = 314 X. 
When the problem is symmetrical with respect to the cross section 5 = 0, these forces 

and moments have the form ( Cl]. pp.220-2%) 

Tz = TL)R co> 20, Ga = Gzs cos 26, S-’ = Szz' sin 26, _Vz’ - iv?.{ sin 26 (6.1) 

consequently on the rectilinear edges we have TZ = GZ = 0. 

Let us project the forces acting on the cut-out segment on the arc 6= l/9 ~t~r~ndicular 

to the shell axis 1 y,r- 

cs 
-'l '1,X 

[i? COS (0 - l/O) -j- Y sin (6 - l/zn)] rd 6d4 = vy !’ iv%’ rd0,dc 

-1 

Inserting (7.1) into the above expression we obtain 
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1 

2sinn =- 
s Ne’ dC (8.2) 

--r 
This, together with the assumption that the functions appearing in the above expressions 
do not undergo large changes, yields 

Ns’ = 0 (sin n) 

But according to our assumption sin R represents the error of the pro-moment conditions, 
hence lvs’ = 0 h”) (8.3) 

The fonrtb equation of equilibrium 
W, a& 
x -~,,?h+Q 

together with (8.3) and (6, I), yields the following estimate : 

QG = 0 (‘1”4) 

which is in full agreement with (6.2). 
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Stability problems of a rectilinear rod and a circular annulus under compression beyond 
the elastic limit are examined on the basis of the prolonged loading concept. 

For an idealized elastoplastic rod model Shanley Cl] showed that the least critical 
value of the axial compressive force is realized under the condition of continuous growth 
of the external loading during buckling. This result was obtained by static methods and 
was later expanded by a number of authors F-51. 

Proceeding from the assumption of equilibrium of the deformation process beyond the 
elastic limit, the stability of a compressed rod is examined taking into account the actual 
position of the boundary separating the elastic and plastic domains during buckling, By 
an asymptotic solution of the nonlinear elastoplastic equilibrium equations the character 
of the branching of the equi~b~um modes in the ne~gh~rh~ of the bif~cation point 
is investigated. 

The bending equations in the post-critical state are obtained by a variational method 
and generalize the Eubr elastic equation to the case of elastoplastic deformation. In 


